Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, logic language is used as representations of knowledge (facts and rules, more specifically). However, logic language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new task, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of logic language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations.
translated by 谷歌翻译
This paper targets unsupervised skeleton-based action representation learning and proposes a new Hierarchical Contrast (HiCo) framework. Different from the existing contrastive-based solutions that typically represent an input skeleton sequence into instance-level features and perform contrast holistically, our proposed HiCo represents the input into multiple-level features and performs contrast in a hierarchical manner. Specifically, given a human skeleton sequence, we represent it into multiple feature vectors of different granularities from both temporal and spatial domains via sequence-to-sequence (S2S) encoders and unified downsampling modules. Besides, the hierarchical contrast is conducted in terms of four levels: instance level, domain level, clip level, and part level. Moreover, HiCo is orthogonal to the S2S encoder, which allows us to flexibly embrace state-of-the-art S2S encoders. Extensive experiments on four datasets, i.e., NTU-60, NTU-120, PKU-MMD I and II, show that HiCo achieves a new state-of-the-art for unsupervised skeleton-based action representation learning in two downstream tasks including action recognition and retrieval, and its learned action representation is of good transferability. Besides, we also show that our framework is effective for semi-supervised skeleton-based action recognition. Our code is available at https://github.com/HuiGuanLab/HiCo.
translated by 谷歌翻译
Stochastic human motion prediction aims to forecast multiple plausible future motions given a single pose sequence from the past. Most previous works focus on designing elaborate losses to improve the accuracy, while the diversity is typically characterized by randomly sampling a set of latent variables from the latent prior, which is then decoded into possible motions. This joint training of sampling and decoding, however, suffers from posterior collapse as the learned latent variables tend to be ignored by a strong decoder, leading to limited diversity. Alternatively, inspired by the diffusion process in nonequilibrium thermodynamics, we propose MotionDiff, a diffusion probabilistic model to treat the kinematics of human joints as heated particles, which will diffuse from original states to a noise distribution. This process offers a natural way to obtain the "whitened" latents without any trainable parameters, and human motion prediction can be regarded as the reverse diffusion process that converts the noise distribution into realistic future motions conditioned on the observed sequence. Specifically, MotionDiff consists of two parts: a spatial-temporal transformer-based diffusion network to generate diverse yet plausible motions, and a graph convolutional network to further refine the outputs. Experimental results on two datasets demonstrate that our model yields the competitive performance in terms of both accuracy and diversity.
translated by 谷歌翻译
尽管最近在跨模式检索领域取得了进展,但由于缺乏手动注释的数据集,研究的重点较少。在本文中,我们提出了一种用于低资源语言的噪声跨语法跨模式检索方法。为此,我们使用机器翻译(MT)来构建低资源语言的伪并行句子对。但是,由于MT并不完美,因此它倾向于在翻译过程中引入噪音,从而使文本嵌入被损坏,从而损害了检索性能。为了减轻这一点,我们引入了一种多视图自我验证方法来学习噪声稳定目标语言表示,该方法采用了跨注意模块来生成软伪靶标,以从基于相似性的视图和功能 - 功能 - 基于视图。此外,受到无监督的MT的反向翻译的启发,我们最大程度地减少了原点句子和反翻译句子之间的语义差异,以进一步提高文本编码器的噪声稳健性。在三个视频文本和图像文本跨模式检索基准跨不同语言上进行了广泛的实验,结果表明,我们的方法显着改善了整体性能,而无需使用额外的人体标记数据。此外,从最近的视觉和语言预训练框架(即剪辑)中配备了预训练的视觉编码器,我们的模型可实现显着的性能增长,这表明我们的方法与流行的预训练模型兼容。代码和数据可在https://github.com/huiguanlab/nrccr上找到。
translated by 谷歌翻译
当前的文本到视频检索方法(T2VR)经过培训和测试,并在视频捕获方向的数据集(例如MSVD,MSR-VTT和VATEX)上进行了测试。这些数据集的一个关键属性是,假定视频在短时间内被暂时预先修剪,而提供的字幕很好地描述了视频内容的要旨。因此,对于给定的配对视频和标题,该视频应该与标题完全相关。但是,实际上,由于查询尚不清楚,因此预处理的视频剪辑可能不包含足够的内容来完全满足查询。这表明文学与现实世界之间存在差距。为了填补空白,我们在本文中提出了一个新颖的T2VR子任务,称为部分相关的视频检索(PRVR)。未修剪的视频被认为是部分相关的W.R.T.给定的文本查询是否包含与查询相关的时刻。 PRVR旨在从大量未修剪视频中检索此类相关视频。 PRVR与单个视频时刻检索和视频语料库时刻的检索有所不同,因为后两个是要检索时刻而不是未修剪的视频。我们将PRVR作为多个实例学习(MIL)问题,同时将视频视为一袋视频片段和一袋视频帧。剪辑和帧表示不同时间尺度的视频内容。我们提出了一个多尺度的相似性学习(MS-SL)网络,该网络共同学习PRVR的剪辑规模和框架尺度相似性。在三个数据集(TVR,ActivityNet字幕和Charades-STA)上进行了广泛的实验,证明了该方法的可行性。我们还表明,我们的方法可用于改善视频语料库时刻的检索。
translated by 谷歌翻译
Large-scale pre-training methods of learning cross-modal representations on image-text pairs are becoming popular for vision-language tasks. While existing methods simply concatenate image region features and text features as input to the model to be pre-trained and use selfattention to learn image-text semantic alignments in a brute force manner, in this paper, we propose a new learning method Oscar 1 , which uses object tags detected in images as anchor points to significantly ease the learning of alignments. Our method is motivated by the observation that the salient objects in an image can be accurately detected, and are often mentioned in the paired text. We pre-train an Oscar model on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks, creating new state-of-the-arts on six well-established vision-language understanding and generation tasks. 2
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译